- 无标题文档
查看论文信息

论文题名(中文):

 肿瘤微环境中细胞衰老的水平及功能评估    

姓名:

 裴小雅    

论文语种:

 chi    

学位:

 博士    

学位类型:

 学术学位    

学校:

 北京协和医学院    

院系:

 北京协和医学院基础医学研究所    

专业:

 生物学-生物化学与分子生物学    

指导教师姓名:

 刘德培    

校内导师组成员姓名(逗号分隔):

 王小满 崔申申    

论文完成日期:

 2022-05-20    

论文题名(外文):

 Assessment of cellular senescence levels and function in the tumor microenvironment    

关键词(中文):

 细胞衰老 肿瘤微环境 免疫治疗 机器学习    

关键词(外文):

 cellular senescence tumor environment immunotherapy machine learning    

论文文摘(中文):

细胞衰老表现为细胞周期的不可逆停滞,在机体衰老和疾病发展过程中发挥重
要作用。癌症作为一类与年龄显著相关的疾病,是老年人口死亡的主要原因。当前
的诸多研究表明肿瘤微环境中的细胞衰老与癌症的发生发展相关,但在不同癌症类
型中细胞衰老发挥的作用却存在差异。一方面,衰老的肿瘤细胞会丧失增殖能力,
并通过衰老相关分泌表型(senescence associated secretory phenotype,SASP)招募免
疫细胞至肿瘤微环境中抑制癌症进展。另一方面,SASP 的长期存在会形成有助于
肿瘤细胞生长的慢性炎症环境,并破坏细胞外基质屏障促进肿瘤细胞的扩散和侵袭。
因此细胞衰老在癌症发生发展过程中所扮演的角色还不甚明确,仍有待研究。
由于缺乏通用的细胞衰老特异性标志物,如何定义细胞衰老水平仍是亟待解决
的关键问题。当前的研究策略逐渐关注于整合多种衰老细胞的转录表达谱,以识别
细胞衰老的共同分子特征。然而肿瘤微环境中细胞衰老水平的准确度量仍有待描绘。
因此,迫切需要开发一种计算学方法以量化样本的细胞衰老水平,并将其应用于评 估肿瘤微环境中与细胞衰老相关的表型变化。
在本研究中,我们定义了一个评估细胞衰老水平的计算指标―CS 得分(Cellular 
Senescence score),并基于转录组数据分别计算 33 种癌症类型样本的 CS 得分以描
绘泛癌层面的细胞衰老景观。通过整合约 20,000 名患者和 212,000 个单细胞的多平
台数据,我们综合分析了肿瘤微环境中细胞衰老相关特征的变化。分析结果表明,
肿瘤组织的细胞衰老水平显著低于正常组织,并与基因组变异呈显著负相关。细胞
衰老与免疫分子特征之间的关联展示出癌症类型特异性。前列腺癌单细胞转录组的
分析显示,肿瘤内细胞衰老水平的高低与免疫功能的激活或抑制状态密切相关。CS
得分还可用于预测多个队列中的免疫治疗反应,并与患者生存期的延长正相关。最
后,通过机器学习算法,我们在前列腺癌中筛选出来自细胞衰老特征基因集的三个
基因以此构建预后指标―CS 预测(Cellular Senescnece predictor),并在四个独立队
列以及 72 个临床样本的内部队列中验证了 CS 预测的预后效能。细胞衰老的量化及
相关分析结果展示于交互式在线网站 TCSER(http://tcser.bmicc.org)。
总体而言,本研究在 33 种癌症类型中进行的细胞衰老水平及功能的综合评估,
为深入理解细胞衰老在癌症中所发挥的环境依赖性调节作用构建了一个全面的框
架。本研究解析了不同癌症类型中细胞衰老相关分子特征的独特变化,并筛选到前
列腺癌中与预后相关的细胞衰老特征基因,为癌症类型特异的精准治疗提供了新的
思路及有价值的治疗靶点。交互式平台的开发和使用也为各方面的研究者提供了便
利,有助于推动细胞衰老领域开展更加广泛且深入的研究。

论文文摘(外文):

Cellular senescence (CS), manifested as the irreversible arrest of the cell cycle, is a 
critical component of the aging hallmarks. Cancer is considered as an aging-related disease 
and remains the leading cause of death in the aged population. Senescent cells have been 
observed in the murine and human tumor microenvironments, accumulating evidence has 
linked the cell senescence in tumor microenvironment with cancer progression and 
metastasis, whereas conflicting conclusions have been made across various cancer types.
One of senescent characteristic is the increased secretion of multiple cytokines, 
chemokines and proteinases, which is termed as the senescence associated secretory 
phenotype (SASP). SASP has been reported to accelerate tumor growth by facilitating 
immune evasion and the destruction of extracellular matrix barrier, but it can also protect 
against tumor development by inhibiting tumor cell proliferation and stimulating the 
immune response in different contexts. Thus, it is of particular important to investigate the 
roles of cellular senescence in diverse cancer types, which would improve the tailoring of 
senescence-targeted therapy in specific tumors.
 Defining cellular senescence levels remains a critical unanswered question due to 
the absence of universal and specific markers. Current researchers are more interested in
how to recognizing common features of cellular senescence by integrating several 
transcriptional profiles of senescent cells, but the accurate quantification of senescence 
levels in tumor environment remain poorly characterized. Thus, it is urgently needed to 
develope a computational method to quantify cellular senescence levels in patients, and 
apply the method to explore phenotypes associated with cellular senescence during tumor 
development.
 Our study defined computational metrics of senescence levels as CS scores to 
delineate CS landscape across 33 cancer types and explored CS-associated phenotypes by 
integrating multi-platform data from ∼20,000 patients and ∼212,000 single-cell profiles.
Our analyses revealed the cancer type-specific associations of senescence levels with 
genomic variations and immune molecular features. Deciphering single-cell profiles in 
prostate cancer cells revealed that cellular senescence levels maintained intratumor 
heterogeneity and were closely associated with activated or inhibited immune features.
Importantly, CS score also predicted immunotherapy response in multiple cohorts and 
significantly associated with prolonged patient survival. Furthermore, three prognosis
related genes from cellular signature gene set were identified by machine learning 
algorithms in prostate cancer and were further validated in four independent cohorts and 
an in-house cohort of 72 prostate cancer clinical samples. The senescence quantification 
and related analyses are available on an interactive online website, TCSER 
(http://tcser.bmicc.org).
 Overall, our comprehensive analysis of transcriptional profiles in 33 cancer types 
has established a comprehensive framework for better understanding of the context 
dependent regulatory functions of cellular senescence in different cancer types, and we 
screened prognosis-related cellular senescence biomarkers in prostate cancer. Our study 
unraveled the unique changes of molecular features associated with cellular senescence in 
various cancers, providing new ideas and valuable therapeutic targets for cancer typespecific precision therapy. The interactive platform also facilitates the investigation of 
widely research field, and promote in-depth exploration of cellular senescence.

开放日期:

 2022-05-31    

无标题文档

   京ICP备10218182号-8   京公网安备 11010502037788号