- 无标题文档
查看论文信息

论文题名(中文):

 8号染色体三体对MDS的致病作用及PUS1对 MLASA小鼠红系发育的调控机制研究    

姓名:

 李浩渊    

论文语种:

 chi    

学位:

 博士    

学位类型:

 学术学位    

学校:

 北京协和医学院    

院系:

 北京协和医学院血液学研究所    

专业:

 临床医学-★干细胞与再生医学    

指导教师姓名:

 袁卫平    

校内导师组成员姓名(逗号分隔):

 施均 初雅婧    

论文完成日期:

 2025-03-10    

论文题名(外文):

 The Pathogenesis of Trisomy 8 in MDS and Regulatory Mechanism of PUS1 for Erythropoiesis in MLASA Mice    

关键词(中文):

 骨髓增生异常综合征 8 号染色体三体 核型异常 造血干祖细胞 染色体三 维空间结构    

关键词(外文):

 Myelodysplastic syndrome Trisomy 8 Chromosomal abnormality HSPCs 3D chromatin organization    

论文文摘(中文):

骨髓增生异常综合征(Myelodysplastic syndrome,MDS)是一类克隆性造血疾 病,该疾病以病态造血、外周血细胞减少及造血干祖细胞(Hematopoietic stem and progenitor Cell, HSPC)发育异常为特征,在疾病后期易向急性髓系白血病(Acute myeloid leukemia,AML)发生恶性转化。近年来随着研究的不断深入,基因突变、 表观调控异常、免疫失调以及细胞遗传学变异等因素在 MDS 中的作用机制逐渐被 揭示。其中细胞遗传学异常不仅参与疾病进展,更是预后评估的关键指标且在 MDS 诊疗体系中具有多重临床价值。8 号染色体三体(+8)作为 MDS 核型异常最常见的 一种类型可能影响造血干祖细胞内染色质的 3D 空间结构,从而使得基因组的功能 以及染色质表观遗传状态发生相应的改变,而目前尚不清楚+8 在多大程度上驱动染 色质 3D 结构的改变。基于此,本研究从“核型异常-染色质 3D 空间结构改变-基因 表达改变-HSPC 数量/功能异常”角度探究+8 对 MDS 的致病机制,重点阐明其对 HSPC 功能、线粒体代谢稳态、三维基因组空间结构及转录组动态调控的影响。

研究方法
我们首先将两例伴有+8 的 MDS 患者骨髓单个核细胞样本在体外进行重编程使 其诱导形成患者来源的 iPSC,随后经流式分析检测和免疫荧光染色等方法验证 iPSC 的多能干性。我们之后将不同核型的 iPSC 进行造血诱导形成造血干祖细胞并检测 造血标志物比例、集落形成能力、体内重建能力和髓系/红系定向分化能力。接下来 我们通过流式分析检测了不同核型 iPSC 的线粒体膜电位、ATP 水平和 ROS 水平等 来评估线粒体功能,也检测了凋亡相关标志物来评估线粒体所产生的功能障碍对凋 亡的影响。我们进一步采用 Hi-C 组学技术分析 iHSPC(iPSC- Hematopoietic stem and progenitor Cell)的染色体构象及基因组相互作用特征并通过 RNA-seq 技术探究 +8 核型异常对 iHSPC 的基因表达模式和相关信号通路的影响,最后我们联合 Hi-C 和 RNA-seq 数据全面解析+8 核型异常对染色质三维结构的影响及其可能的分子调 控网络。

研究结果
1. 患者 MDS1 和 MDS2 临床样本特征均表现出不同程度的白细胞、血红蛋白和网 织红细胞的异常,核型分析显示 MDS1 为 47,XX,+8[20],MDS2 为 47,XX,+8[16]/46,XX[4],并分别有中度和低度的 IPSS-R 评分,表明 8 号染色体三体核型异常与 MDS 的发生具有相关性;
2. 我们通过Ficoll法分离样本骨髓单个核细胞,利用Yamanaka四因子重编程构建iPSC 模型。经流式分选获得正常核型(MDS-nk)与+8 核型(MDS-tr8)的 iPSC 细胞株,并通过 G 显带核型分析及 FISH 验证不同细胞株的核型稳定性。同时 我们对 MDS 患者来源的伴有不同核型的 iPSC 进行流式细胞术和免疫荧光染色 实验,确认所有 iPSC 株均表现出典型的多能干性;
3. 我们将不同核型 iPSC 经造血诱导形成 iHSPC,MDS-tr8 造血干祖细胞表面标志 物 CD31、CD34、CD43、CD45 的表达与 MDS-nk 组相比明显降低,同时集落 形成能力、体内重建能力和髓系/红系定向分化能力均下降,提示+8 核型异常导 致造血干祖细胞的发育受阻和造血功能缺陷;
4. +8 核型异常导致 iPSC 的线粒体膜电位下降,钙离子稳态失衡,同时氧化磷酸 化水平和糖酵解水平下降,代谢能量受损。ROS 水平增加并导致细胞处于氧化 应激状态。同时 MDS-tr8 组 Fas 和 Caspase-3 水平上升,表明线粒体功能障碍促 进了细胞凋亡;
5. Hi-C结果发现+8核型异常导致染色体间的相互作用模式、A/Bcompartments和 TAD 等结构发生变化,其中 8 号染色体的相互作用增加。RNA-seq 分析显示基 因表达谱发生改变,这表明+8 核型异常可能通过改变基因组的空间结构影响基 因表达。

研究结论
本研究利用患者来源 iPSC 模型与多组学技术全面解析+8 核型异常在 MDS 中 的致病机制,也揭示了三维基因组重构与线粒体代谢紊乱的协同效应。我们将 8 号 染色体三体驱动 MDS 致病进程的几种机制总结如下:
1. 造血功能层面:+8 核型异常会破坏 HSPC 的分化能力与自我更新能力,引发无效造血及外周血细胞数量降低;
2. 代谢层面:线粒体膜电位下降、ROS 累积及能量代谢失衡触发凋亡信号,加剧骨髓衰竭;
3. 基因组结构层面:三维基因组发生重构,TAD 结构变得紧凑、A/B 区室转换等改变重塑了染色质可及性并激活 chr8 上特定区域的癌基因表达;
4. 分子网络层面:基因表达模式发生改变, CTHRC1、ENPP2、CCN3 关键基因可能通过调控细胞增殖、迁移及代谢通路促进克隆演化与疾病进展。

 

论文文摘(外文):

Objectives
Myelodysplastic syndrome (MDS) is a highly heterogeneous clonal hematopoietic disorder, characterized by pathological hematopoiesis, peripheral cytopenia and dysplasia of hematopoietic stem and progenitor cells (HSPCs). MDS may malignantly transform into acute myeloid leukemia (AML) in later stage. In recent years, studies have gradually revealed the roles of epigenetic dysregulation, immune imbalance and cytogenetic variations in MDS. Among these factors, cytogenetic abnormalities not only contribute to disease progression but also serve as key prognostic indicators with significant clinical value in MDS diagnosis and treatment. Trisomy 8 is the most common karyotypic abnormality in MDS and may influence the 3D chromatin organization within HSPCs, leading to functional alterations in the genome and changes in chromatin epigenetic states. But the extent to which trisomy 8 drives 3D chromatin structural changes remains unclear. This study aims to investigate the pathogenic mechanisms of trisomy 8 in MDS by examining the relationship between karyotypic abnormalities, 3D chromatin structural alterations, gene expression changes and HSPC dysfunction. We will analyze the impact of trisomy 8 on HSPC function, mitochondrial metabolic homeostasis and 3D genome spatial organization.
Methods
We first reprogrammed bone marrow mononuclear cells (BMMNCs) from two MDS patients to generate induced pluripotent stem cell (iPSC) by Yamanaka factors in vitro. The pluripotent of iPSC was verified through FACS and immunofluorescence. Next,we induced iPSC with different karyotypes to hematopoietic differentiation to form embryoid bodies and assessed the proportion of HSPC markers, CFU ability, engraftment ability and myeloid/erythroid differentiation capacity. Mitochondrial function was assessed by measuring mitochondrial membrane potential, ATP level and ROS level. Apoptosis-related markers were analyzed using FACS to assess the impact of mitochondrial dysfunction on apoptosis. We also employed Hi-C to analyze chromatin conformation and genome interactions in iHSPCs, while RNA-seq was used to examine the effects of trisomy 8 on gene expression patterns and functional pathways. The integration of these multi-omics data facilitated the systematic analysis of how trisomy 8 influences 3D chromatin structure and its molecular regulatory network, ultimately constructing a landscape of transcriptomic and chromatin structural.
Results
1.MDS patients (MDS1 and MDS2) exhibited varying degrees of abnormal leukocyte,hemoglobin and reticulocyte. Chromosomal analysis revealed that MDS1 had a karyotype of 47,XX,+8[20], while MDS2 had a mosaic karyotype of 47,XX,+8[16]/46,XX[4]. Both patients had moderate and low IPSS-R scores, suggesting a strong correlation between trisomy 8 and MDS pathogenesis.
2.BMMNCs were isolated using Ficoll separation and iPSC models were established through Yamanaka factor-mediated reprogramming. Flow cytometry was used to obtain iPSC clones with normal karyotype (MDS-nk) and trisomy 8 karyotype (MDS-tr8) and karyotypic stability was confirmed by G-banding and FISH analysis. Flow cytometry and immunofluorescence staining confirmed the pluripotency of all patient-derived iPSC lines.
3.Upon hematopoietic differentiation, iHSPCs derived from MDS-tr8 exhibited significantly reduced expression of surface markers CD31, CD34, CD43 and CD45 compared to MDS-nk. Additionally, colony-forming ability, engraftment potential and myeloid/erythroid differentiation capacity were all impaired, indicating that trisomy 8 disrupts HSPC development and hematopoietic function.
4.Trisomy 8 led to a decrease in mitochondrial membrane potential in iPSCs, while ATP levels remained unchanged, but calcium homeostasis was disrupted. ROS levels were significantly elevated,resulting in oxidative stress. FACS analysis showed increased expression of apoptosis markers Fas and Caspase-3 in MDS-tr8,indicating that mitochondrial dysfunction promotes apoptosis.
5.Integrated Hi-C and RNA-seq revealed that trisomy 8 increased cis-chromosomal interactions and altered inter-chromosomal interaction patterns, particularly enhancing interactions on chromosome 8. We also observed that structural changes in A/B compartments and topologically associating domains (TAD). Additionally, transcriptomic profiling showed altered gene expression associated with oncogenic signaling pathways, suggesting that trisomy 8 may contribute to MDS progression by altering 3D genome architecture and activating oncogenic pathways.
Conclusions
This study is the first to integrate iPSC models with multi-omics approaches to comprehensively elucidate the pathogenic mechanisms of trisomy 8 in MDS. We uncovered the synergistic effects of 3D genome reorganization and mitochondrial metabolic dysregulation in MDS pathogenic. We summarized several mechanisms by which trisomy 8 drives the pathogenic process of MDS as follows:
1.Hematopoietic function: Trisomy 8 impairs HSPC differentiation and self-renewal, leading to ineffective hematopoiesis and peripheral cytopenia.
2.Metabolic regulation: Mitochondrial membrane potential collapse, ROS accumulation and metabolic imbalance trigger apoptotic signaling, exacerbating bone marrow failure.
3.Genomic architecture: 3D genome reorganization, including TAD compaction and A/B compartment switching, reshapes chromatin accessibility and activates oncogenes on chromosome 8.
4.Molecular network: Changes in gene expression patterns, particularly in CTHRC1, ENPP2 and CCN3, promoting clonal evolution and disease progression.

开放日期:

 2025-06-12    

无标题文档

   京ICP备10218182号-8   京公网安备 11010502037788号