- 无标题文档
查看论文信息

论文题名(中文):

 乳酸抑制葡萄糖转运体 GLUT10 介导的 CD8+ T 细 胞活化及抗肿瘤免疫    

姓名:

 刘莹    

论文语种:

 chi    

学位:

 博士    

学位类型:

 学术学位    

学校:

 北京协和医学院    

院系:

 北京协和医学院医药生物技术研究所    

专业:

 药学-微生物与生化药学    

指导教师姓名:

 李珂    

论文完成日期:

 2025-04-14    

论文题名(外文):

 Activation and antitumor immunity of CD8+ T cells are supported by the glucose transporter GLUT10 and disrupted by lactic acid    

关键词(中文):

 肿瘤免疫 CD8+ T 细胞 GLUT10 乳酸 模拟肽    

关键词(外文):

 tumor immunity CD8+ T cells GLUT10 lactate mimic peptide    

论文文摘(中文):

症是威胁人类健康寿命的主要挑战之一。据世界卫生组织统计2021 年全 球大疾病相关死亡居第目前治疗手段主要包括手除、 疗、化疗、靶向治疗及免疫治疗等。CD8细胞作抗肿瘤免疫的主要效应细胞 之一,也是肿瘤免疫疗法发挥作用的核细胞。因此,恢复 CD8细胞增 强体抗肿瘤免疫的重点。CD8细胞在活化过程中,由于其快速和分化的需 CD8细胞代谢发重编程,供能方式氧化酸化转化有氧糖酵解葡萄 糖需求量显著增强。然而,由于肿瘤微环境氧、糖、低 pH 特点,CD8细 胞糖代谢能力受到抑制。因此,探究 细胞活化及抗肿瘤过程中的糖代谢改变及相 应机制,开发相应治疗策略可提高肿瘤免疫治疗响应率,使更多患者受益于免疫疗 法,这对于肿瘤的治疗,延长肿瘤患者生存周期都具有十分重要的意义。

本研究首先通过定量 PCR 筛选 CD8细胞活化及抗肿瘤过程中表达改变的葡 萄糖转运体,鉴到 GLUT10 的表达在 CD8细胞活化及抗肿瘤过程中显著上调。 此幼稚 CD8细胞(Naïve CD8T cell),效应 CD8细胞表面 GLUT10 表达水平更通过构建 细胞上异性敲除 GLUT10 的转基小鼠(Cd4creGlut10fl/fl),我们现,GLUT10 敲除抑制 CD8细胞体外活化及活化过 程中增及效应因子的分泌。此野生型小鼠Cd4creGlut10fl/fl 小鼠皮下肿 瘤生长加快。OT-I CD8细胞过继小鼠模型表明GLUT10 敲除导致 CD8细 胞体内异性肿瘤杀伤能力下降。CD8细胞上 GLUT10 敲除降低 细胞葡萄糖 摄取和糖酵解能力。以上结果表明在 CD8细胞活化及抗肿瘤过程中GLUT10 是 CD8细胞葡萄糖摄取依赖的主要转运体一步究中,我们现单纯 恢复肿瘤微环境中的葡萄糖并不恢复 CD8细胞肿瘤杀伤能力,即葡萄糖匮乏 并不是导致 CD8细胞糖代谢异唯一因通过代谢组学筛选,我们鉴到 肿瘤微环境中高浓度的乳酸抑制 CD8细胞葡萄糖摄取能力时抑制肿瘤细胞 葡萄糖摄取和乳酸分泌可增强 CD8细胞抗肿瘤免疫

机制,我们现,当胞外乳酸浓度升高,大量乳酸将被 CD8细胞摄取并 堆积于细胞内。这些乳酸通过与 GLUT10 蛋白第六段胞内结合(Intracelluar Region
6, IR6
),而抑制 GLUT10 葡萄糖转运的,最终影响 CD8细胞的葡萄糖摄 取。此,尽管胞外酸化影响 GLUT10 与葡萄糖结合,但 pH 值降低可促进乳酸 和 GLUT10 结合,从而加剧乳酸对 CD8细胞糖摄取抑制。通过对乳酸与 GLUT10 结合的 IR6 结构域设计模,我们得到了可穿透细胞的 PG10.1PG10.2PG10.3 条模其中 PG10.3 明显打断乳酸与 GLUT10 结合。功能学上模 肽 PG10.3 可恢复由乳酸抑制的 CD8细胞的葡萄糖摄取异性肿瘤杀伤能 力。此肽 PG10.3 通过靶向 GLUT10 抑制小鼠皮下肿瘤生长,增强肿瘤浸 润 CD8细胞活化、增和效应治疗学上肽 PG10.3 与 GLUT1 抑制 剂 WZB117 或 PD-1 抗体到更好抑制肿瘤的效果

综上本研究发GLUT10CD8T细胞活化和抗肿瘤过程中依赖的主要 葡萄糖转运体肿瘤微环境中高浓度的乳酸通过与 GLUT10 的 IR6 结构结合的方 式抑制 GLUT10 葡萄糖转运能力而导致 CD8细胞增能力和效应能下降。 通过筛选 IR6 结构肽 PG10.3 打断乳酸与 GLUT10 结合可恢复 CD8细胞 抗肿瘤肽 PG10.3 与 PD-1 抗体用进一步抑制小鼠皮下肿瘤生长。该研 究肿瘤免疫治疗提供潜在的治疗靶点

论文文摘(外文):

Cancer remains one of the most formidable challenges to human health and longevity. According to World Health Organization statistics, cancer ranked as the second leading cause of disease-related deaths globally in 2021. Current cancer treatment modalities primarily include surgical resection, radiotherapy, chemotherapy, targeted therapy, and immunotherapy. Among immune cells, CD8T cells serve as the principal effector cells mediating anti-tumor immunity and represent the cornerstone of tumor immunotherapy efficacy. Consequently, restoring CD8T cell functionality has become a critical focus for enhancing anti-tumor immune responses.

During activation, CD8T cells undergo metabolic reprogramming to meet the heightened bioenergetic demands of rapid proliferation and differentiation, shifting their primary energy production from oxidative phosphorylation to aerobic glycolysis with substantially increased glucose requirements. However, the hypoxic, glucose-deprived, and acidic characteristics of the tumor microenvironment (TME) significantly suppress CD8T cell glycolytic capacity. Therefore, investigating metabolic alterations in T cell activation and anti-tumor processes, elucidating underlying mechanisms, and developing corresponding therapeutic strategies could improve response rates to tumor immunotherapy, benefiting more patients and holding profound significance for cancer treatment and survival extension.

This study initially employed quantitate PCR screening to identify differentially expressed transporters during CD8T cell activation and anti-tumor responses, revealing marked upregulation of GLUT10 expression. Compared to naïve CD8T cells, effector CD8T cells exhibited substantially higher GLUT10 surface expression. Through generating T cell-specific GLUT10 knockout transgenic mice (Cd4creGlut10fl/fl), we demonstrated that GLUT10 deletion impaired CD8T cell activation, proliferation, and effector cytokine secretion in vitro. Furthermore, Cd4creGlut10fl/fl mice exhibited accelerated subcutaneous tumor growth compared to wild-type controls. The OT-I CD8T cell adoptive transfer model confirmed that GLUT10 knockout compromised CD8T cell- mediated specific tumor cytotoxicity in vivo. Mechanistically, GLUT10 deficiency primarily disrupted CD8T cell glucose uptake and glycolytic capacity, establishing GLUT10 as the dominant glucose transporter supporting CD8T cell effector functions during activation and anti-tumor responses.

Notably, simply restoring glucose availability in the TME failed to rescue CD8T cell tumor-killing capacity, indicating that glucose deprivation alone cannot account for CD8T cell metabolic dysfunction. Metabolomics identified high lactate concentrations in the TME as a critical inhibitor of CD8T cell glucose uptake, while simultaneously 

suppressing tumor cell lactate secretion and glucose uptake enhanced CD8T cell anti- tumor immunity.

Mechanistically, the study found that when the extracellular lactate concentration increases, large amounts of lactate are taken up by CD8T cells and accumulate intracellularly. Lactate was found to bind the sixth intracellular region (IR6) of GLUT10, thereby inhibiting its glucose transport function and ultimately impairing CD8T cell glucose uptake. Additionally, although extracellular acidification does not affect the binding of GLUT10 to glucose, a lower pH promotes the binding of lactate to GLUT10, exacerbating the inhibition of lactate on glucose uptake in CD8T cells. Through rational design of IR6-targeting mimetic peptides, we developed three candidates (PG10.1, PG10.2, PG10.3), with PG10.3 demonstrating potent disruption of lactate-GLUT10 binding. Functionally, PG10.3 restored lactate-impaired CD8T cell glucose uptake and tumor- killing capacity. Therapeutically, PG10.3 administration significantly suppressed subcutaneous tumor growth in mice while enhancing tumor-infiltrating CD8T cell activation, proliferation and effector functions. Combination therapy with the GLUT1 inhibitor WZB117 or PD-1 antibodies yielded superior synergistic anti-tumor effects.

In summary, this study identifies GLUT10 as the principal glucose transporter supporting CD8T cell activation and anti-tumor responses. The high lactate concentration in TME suppresses CD8T cell glucose uptake through IR6 domain binding, leading to impaired proliferation and effector functions. The IR6-targeting mimic peptide PG10.3 effectively restores anti-tumor immunity by blocking lactate-GLUT10 interaction and demonstrates combinatorial efficacy with PD-1 blockade. These findings provide both a promising therapeutic target and a novel drug candidate for cancer immunotherapy.

开放日期:

 2025-05-22    

无标题文档

   京ICP备10218182号-8   京公网安备 11010502037788号