- 无标题文档
查看论文信息

论文题名(中文):

 生物信息学指导的链霉菌天然产物的发现以及二氢 儿茶酚类化合物的全细胞合成    

姓名:

 刘元江    

论文语种:

 chi    

学位:

 硕士    

学位类型:

 学术学位    

学校:

 北京协和医学院    

院系:

 北京协和医学院医药生物技术研究所    

专业:

 药学-微生物与生化药学    

指导教师姓名:

 贺海燕    

论文完成日期:

 2025-06-01    

论文题名(外文):

 Bioinformatics-Based Discovery of Streptomyces Natural Products and Whole-Cell Synthesis of Dihydrocatechol Derivatives    

关键词(中文):

 基因组挖掘 双铁蛋白 氨基氧化酶 甲苯双加氧酶 顺式-1 2-二氢 儿茶酚    

关键词(外文):

 Genome mining diiron proteins Amino oxygenases Toluene dioxygenase cis-1 2-dihydrocatechol.    

论文文摘(中文):

链霉菌是天然产物的重要来源。在后基因组时代,随着基因组文件数量的爆炸式增加和在基因组中识别 BGC 的能力不断提高,人们发现天然产物的速度再次加快。几乎同时,海量的基因组文件也使得基因组酶学快速发展。EFI-基因组酶学工具的诞生使人们能够对某一个家族的蛋白进行可视化分析,以便于挑选感兴趣的生物合成基因簇进行天然产物挖掘,而获得的天然产物也将反过来促进酶功能和催化机制的研究。
自然界的各种生物体内,广泛存在一类非血红素依赖的双铁蛋白。其双铁中心通过活化氧气生成活性超氧或过氧物种进而催化氧化反应。这类蛋白催化的反应种类异常繁多,与生物体内生命活动息息相关。在放线菌中,还普遍存在一大类以对氨基苯甲酸氨基单加氧酶 AurF 为代表的双铁蛋白亚家族(Pfam11583)。在数据库中可以检索到超过 8900 个蛋白属于这一家族(序列同源性>25%),都被注释成为 AurF 类双铁氨基单加氧酶。其中,只有少数几个成员的功能得到了确证,大多数蛋白在生物体内真实催化活性完全未知。为此,本课题以生物信息学分析作为突破口,寻找新功能 AurF 类双铁蛋白,并揭示其参与的生物合成途径。
我们首先对 PF11583 家族蛋白进行序列同源性网络分析,再结合 GNT 工具对来源于完全未知的簇中包含的大量基因簇进行分析比较,从 8900 多条基因簇中挑选了 11 株菌作为初步研究对象。对其中六株菌开展了基因敲除工作,敲除目标基因为 PF11583 家族双铁蛋白基因及生物合成骨架基因。对 Streptomyces prasinus CGMCC4.1439 和 Streptomyces griseoflavus CGMCC4.1454 两组野生型菌株和基因敲除突变株在不同培养基中同时发酵,观察代谢产物的差异,寻找可能的目标基因簇负责合成的天然产物。Streptomyces prasinus CGMCC4.1439 在H-P 发酵培养基中,相比于敲除突变株,野生型发酵液中可以观察到 m/z 618[M+Na]+和 m/z 636 [M+Na]+两组阳离子信号在基因敲除后消失。我们对上述有差异的峰进行分离制备,发现 4 个新的天然产物。
有机合成的基本挑战之一是创造具有特定手性的分子,对映体纯化合物的合成仍然是药物研究中的一个焦点。利用酶和其他生物催化剂固有的选择性和效率,生物催化不对称反应为可持续和高效的化学合成提供了一种强大的工具。由甲苯双加氧酶(TDO)酶促衍生得到顺式-1,2-二氢儿茶酚类化合物已被研究了几十年,其以高转化率、高底物宽容性和仅产生单一的对映体产物而闻名。生物催化产生顺式-1,2-二氢儿茶酚类化合物被报道时起,就引起了合成化学家北京协和医学院 中文摘要 硕士学位论文的兴趣,目前由顺式-1,2-二氢儿茶酚类化合物作为全合成起始原料的天然产物及其衍生物多达一百余类。
为了获得结构更加多样的化学全合成起始原料,我们构建了 TDO 的大肠杆菌全细胞生物催化体系,并对 TDO 的底物识别范围进行更多尝试。脂肪环取代在药物分子中较为常见。越来越多的研究表明,环烷基取代可以通过改变分子的多项化学和生物学特性从而提高其成药性,且还没有脂肪环取代苯底物被TDO识别催化的报道。为此,我们在 TDO的大肠杆菌全细胞生物催化体系中喂养 3 种脂肪环单取代苯底物,并成功检测到对应的二氢儿茶酚产物生成。这一结果不仅扩展了甲苯双加氧酶的底物识别范围,还为手型化合物以及药用分子化学合成起始单元的绿色供应提供了新途径。

论文文摘(外文):

Streptomyces are an important source of natural products. In the post-genomic era, the exponential increase in genomic data and the continuous advancement in identifying biosynthetic gene clusters (BGCs) within genomes have significantly accelerated the discovery of natural products. Almost concurrently, the vast accumulation of genomic information has driven the rapid development of genomic enzymology. The emergence of EFI-genomic enzymology tools allows for the visualization and analysis of specific protein families, thereby facilitating the identification of promising biosynthetic gene clusters for natural product mining. The resulting natural products, in turn, contribute to a deeper understanding of enzyme functions and catalytic mechanisms.
Non-heme diiron oxygenases, a large family of metalloproteins, are widely distributed across all domains of life. These enzymes activate molecular oxygen via their diiron centers, generating peroxide or superoxide species to catalyze a variety of oxidation reactions. The reactions mediated by these proteins are highly diverse and play critical roles in various biological processes. Among these enzymes, there exists a unique subfamily of diiron proteins in Actinomycetes, comprising over 8,900 members that share greater than 25% sequence identity and are annotated as AurF-type Noxygenases. However, to date, only a small fraction of this subfamily has been functionally characterized, leaving the catalytic activities of the vast majority of its members largely unexplored. Therefore, this project utilizes bioinformatics analysis to identify novel functional AurF-like diiron proteins and elucidate the biosynthetic pathways in which they participate.
We initially performed sequence similarity network analysis on PF11583 family proteins, then analyzed and compared a large number of gene clusters from completely unknown clusters using the GNT tools. Among over 8,900 sequences, we identified 11 strains as preliminary research candidates. Subsequently, gene knockout experiments targeting PF11583 family diiron protein genes and biosynthetic backbone genes were performed in six selected strains. To investigate metabolic differences and identify potential natural products, wild-type strains Streptomyces prasinus CGMCC 4.1439 and Streptomyces griseoflavus CGMCC 4.1454 were co-fermented with their respective knockout mutants under various medium conditions. In H-P fermentation medium, the wild-type Streptomyces prasinus CGMCC 4.1439 exhibited the disappearance of two groups of cationic signals (m/z 618 and 636) compared to the mutant strain. The isolation and purification of these differential metabolites resulted in the discovery of four novel natural products.
One of the fundamental challenges in organic synthesis is the creation of molecules with specific chiral configurations, and the synthesis of enantiomerically pure compounds remains a critical focus in pharmaceutical research. By harnessing the inherent selectivity and efficiency of enzymes and other biocatalysts, biocatalytic asymmetric reactions offer a powerful approach for sustainable and efficient chemical synthesis. The enzymatic synthesis of cis-1,2-dihydrocatechol derivatives using toluene dioxygenase (TDO) has been extensively studied over decades, recognized for its high conversion rates, broad substrate tolerance, and the exclusive production of singleenantiomer products. Since the initial report on the biocatalytic production of cis-1,2-dihydrocatechol derivatives, synthetic chemists have demonstrated significant interest in this area. To date, over 100 natural products or their derivatives employ cis-1,2-dihydrocatechol derivatives as key starting materials for their total synthesis.To obtain structurally diverse starting materials for chemical total synthesis, we constructed an Escherichia coli whole-cell biocatalytic system expressing toluene dioxygenase (TDO) and further investigated its substrate recognition scope. Cycloalkyl structural units are prevalent in drug molecules, and growing evidence indicates that such structural units can enhance druggability by modulating multiple chemical and biological properties of molecules. However, no studies have reported the catalysis of cycloalkyl-substituted benzene substrates by TDO. To address this gap, we fed three cycloalkyl-monosubstituted benzene substrates individually into the TDO-based E. coli whole-cell biocatalytic system and successfully detected the corresponding cis-1,2-dihydrocatechol products. This finding not only broadens the substrate recognition range of toluene dioxygenase but also provides a novel and sustainable route for the production of chiral building blocks and starting materials for pharmaceutical synthesis.

开放日期:

 2025-06-26    

无标题文档

   京ICP备10218182号-8   京公网安备 11010502037788号