- 无标题文档
查看论文信息

论文题名(中文):

 基于多b值DWI模型术前预测孤立性BCLC A期肝细胞 癌微血管侵犯的研究    

姓名:

 陈兆微    

论文语种:

 chi    

学位:

 硕士    

学位类型:

 专业学位    

学校:

 北京协和医学院    

院系:

 北京协和医学院肿瘤医院    

专业:

 临床医学-影像医学与核医学    

指导教师姓名:

 马霄虹    

论文完成日期:

 2025-05-22    

论文题名(外文):

 Virtual MR elastography and multi-b-value DWI models for predicting microvascular invasion in solitary BCLC stage A hepatocellular carcinoma    

关键词(中文):

 弥散加权成像 肝细胞癌 磁共振弹性成像 磁共振成像 微血管侵犯    

关键词(外文):

 Diffusion-weighted imaging Hepatocellular carcinoma Magnetic Resonance elastography Magnetic resonance imaging Microvascular invasion    

论文文摘(中文):

目的:评估虚拟磁共振弹性成像(Virtual MR elastography, vMRE)术前预测巴塞罗那临床肝癌(Barcelona Clinic Liver Cancer , BCLC)A期(≤5.0 cm)肝细胞癌(Hepatocellular carcinoma, HCC)微血管侵犯(Microvascular invasion, MVI)的性能,并基于vMRE、多b值DWI模型和临床放射学(Clinical-radiological, CR)特征构建联合列线图。

 

方法: 前瞻性连续收集疑似HCC并于术前行多b值DWI检查的患者。获取vMRE、单指数模型、体素内不相干运动模型和扩散峰度成像模型的定量参数。采用多变量logistic回归分析确定MVI的独立预测因子并构建预测模型。利用独立的定量参数构建组合MRI评分模型(MRI_Score)。基于显著的CR特征和MRI_Score构建可视化列线图,并评估定量参数和模型的预测性能。

 

结果:本研究最终共纳入103例患者(男性87例,女性16例;范围:35–70岁)。基于扩散的剪切模量(μDiff)对MVI的受试者工作特征(receiver operating characteristic,ROC)曲线下面积(area under the curve,AUC)为0.735。利用真扩散系数(D)、平均峰度系数(MK)和μDiff构建了MRI_Score。CR模型和MRI_Score的AUC分别为0.787和0.840。基于甲胎蛋白(AFP)、晕环样强化、肿瘤包膜、肿瘤静脉侵犯双特征预测指标(Two-trait predictor of venous invasion, TTPVI)和MRI_Score的联合列线图显著提高了术前预测MVI的性能,AUC达到0.931(Delong test p < 0.05)。

 

结论: vMRE在预测BCLC A期HCC的MVI方面展现出巨大潜力。结合CR特征、vMRE和定量扩散参数的联合列线图显著提高了预测准确性,可为临床医生确定合适的治疗方案提供帮助。

论文文摘(外文):

Purpose: To evaluate the performance of virtual MR elastography (vMRE) for predicting microvascular invasion (MVI) in Barcelona Clinic Liver Cancer (BCLC) stage A (≤ 5.0 cm) hepatocellular carcinoma (HCC) and to construct a combined nomogram based on vMRE, multi-b-value DWI models, and clinical-radiological (CR) features.

Methods: Consecutive patients with suspected HCC who underwent multi-b-value DWI examinations were prospectively collected. Quantitative parameters from vMRE, mono-exponential, intravoxel incoherent motion, and diffusion kurtosis imaging models were obtained. Multivariate logistic regression was used to identify independent MVI predictors and build prediction models. A combined MRI_Score was constructed using independent quantitative parameters. A visualized nomogram was built based on significant CR features and MRI_Score. The predictive performance of quantitative parameters and models was evaluated.

Results: The study included 103 patients (87 males and 16 females; range: 35–70 years). Diffusion-based shear modulus (μDiff) exhibited a predictive performance for MVI with area under the curve (AUC) of 0.735. The MRI_Score was developed employing true diffusion coefficient (D), mean kurtosis (MK), and μDiff. CR model and MRI_Score achieved AUCs of 0.787 and 0.840, respectively. The combined nomogram based on AFP, corona enhancement, tumor capsule, TTPVI, and MRI_Score significantly improved the predictive performance to an AUC of 0.931 (Delong test p < 0.05).

Conclusions: vMRE exhibited great potential for predicting MVI in BCLC stage A HCC. The combined nomogram integrating CR features, vMRE, and quantitative diffusion parameters significantly improved the predictive accuracy and could potentially assist clinicians in identifying appropriate treatment options.

开放日期:

 2025-06-04    

无标题文档

   京ICP备10218182号-8   京公网安备 11010502037788号