论文题名(中文): | 面向宫颈癌领域的科技文献结构化综述生成方法研究 |
姓名: | |
论文语种: | chi |
学位: | 硕士 |
学位类型: | 学术学位 |
学校: | 北京协和医学院 |
院系: | |
专业: | |
指导教师姓名: | |
校内导师组成员姓名(逗号分隔): | |
论文完成日期: | 2025-04-03 |
论文题名(外文): | Research on Structured Scientific Literature Review Generation Method for Cervical Cancer Field |
关键词(中文): | |
关键词(外文): | Automatic Generation of Literature Reviews Cervical Cancer Large Language Models Prompt Engineering |
论文文摘(中文): |
随着宫颈癌防治研究的不断深入,领域科技文献数量迅速增长,科研人员在面对庞大的文献数据时常常面临信息过载的困境。传统文献综述方法主要依托研究人员手动完成文献的筛选、阅读及内容归纳,这一过程不仅需投入大量时间与人力,还存在较高概率出现信息疏漏或主观判断偏差的风险。当前技术条件下的自动文献综述系统虽然在文本处理效率层面取得突破,但实证分析表明,该类系统仍普遍存在信息冗余度高、逻辑连贯性不足及深度语义解析能力欠缺等系统性缺陷。因此,如何在保证综述质量的前提下,提高生成效率,已成为亟待解决的难题。大语言模型因其在自然语言理解和生成方面的突破性表现,引起了广泛关注,截至2024年底,中国已备案的人工智能大模型数量达到214个。尽管大语言模型在处理复杂文本生成和上下文学习能力方面具有明显优势,但在应用于特定领域时,需要针对性微调才能发挥更好的效果。此外,基于大语言模型的文本生成技术仍面临事实性错误频发与知识表征层次单一等显性缺陷。因此,应用结构化框架和大语言模型集成方法为垂域自动生成文献的发展提供了一种解决方法。本研究针对宫颈癌这一病因明确的癌症,构建专业结构化框架,结合检索增强生成技术和集成模型,自动生成高质量的宫颈癌领域文献综述。具体而言,本研究提出了一种基于大语言模型的结构化综述生成方法,能够在有效降低文献生成负荷的同时,提升综述的可读性、信息覆盖度和结构完整性。此外,本研究还致力于解决现有方法在生成文本时的时滞效应,确保所引用文献的及时性和准确性。 |
论文文摘(外文): |
As research on the prevention and treatment of cervical cancer continues to advance, the volume of scientific literature in this field has grown rapidly. Researchers often face the dilemma of information overload when dealing with vast amounts of literature data. Traditional literature reviews typically rely on manual selection, reading, and summarization, which is time-consuming and prone to omissions or biases. Although existing automated literature review methods have made some progress, they commonly suffer from issues such as redundancy, lack of logical clarity, and superficiality. Therefore, improving the efficiency of generating reviews while ensuring quality has become a pressing issue. Large language models, due to their breakthroughs in natural language understanding and generation, have attracted widespread attention. As of the end of 2024, the number of AI large models registered in China has reached 214. While large language models have distinct advantages in processing complex text generation and context learning, they often require domain-specific fine-tuning to perform effectively in specific fields. Moreover, despite continuous improvements in the performance of large language models, the generated text still faces issues such as poor factual accuracy and shallow content. Therefore, combining structured frameworks with large language model integration methods provides a solution for the development of automated literature generation in specialized fields. |
开放日期: | 2025-06-12 |